EconPapers    
Economics at your fingertips  
 

Intrusion Detection System to Advance Internet of Things Infrastructure-Based Deep Learning Algorithms

Hasan Alkahtani, Theyazn H. H. Aldhyani and M. Irfan Uddin

Complexity, 2021, vol. 2021, 1-18

Abstract: Smart grids, advanced information technology, have become the favored intrusion targets due to the Internet of Things (IoT) using sensor devices to collect data from a smart grid environment. These data are sent to the cloud, which is a huge network of super servers that provides different services to different smart infrastructures, such as smart homes and smart buildings. These can provide a large space for attackers to launch destructive cyberattacks. The novelty of this proposed research is the development of a robust framework system for detecting intrusions based on the IoT environment. An IoTID20 dataset attack was employed to develop the proposed system; it is a newly generated dataset from the IoT infrastructure. In this framework, three advanced deep learning algorithms were applied to classify the intrusion: a convolution neural network (CNN), a long short-term memory (LSTM), and a hybrid convolution neural network with the long short-term memory (CNN-LSTM) model. The complexity of the network dataset was dimensionality reduced, and to improve the proposed system, the particle swarm optimization method (PSO) was used to select relevant features from the network dataset. The obtained features were processed using deep learning algorithms. The experimental results showed that the proposed systems achieved accuracy as follows: CNN = 96.60%, LSTM = 99.82%, and CNN-LSTM = 98.80%. The proposed framework attained the desired performance on a new variable dataset, and the system will be implemented in our university IoT environment. The results of comparative predictions between the proposed framework and existing systems showed that the proposed system more efficiently and effectively enhanced the security of the IoT environment from attacks. The experimental results confirmed that the proposed framework based on deep learning algorithms for an intrusion detection system can effectively detect real-world attacks and is capable of enhancing the security of the IoT environment.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/5579851.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/5579851.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5579851

DOI: 10.1155/2021/5579851

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:5579851