EconPapers    
Economics at your fingertips  
 

An Application of Hybrid Models for Weekly Stock Market Index Prediction: Empirical Evidence from SAARC Countries

Zhang Peng, Farman Ullah Khan, Faridoon Khan, Parvez Ahmed Shaikh, Dai Yonghong, Ihsan Ullah, Farid Ullah and Mariya Gubareva

Complexity, 2021, vol. 2021, 1-10

Abstract: The foremost aim of this research was to forecast the performance of three stock market indices using the multilayer perceptron (MLP), recurrent neural network (RNN), and autoregressive integrated moving average (ARIMA) on historical data. Moreover, we compared the extrapolative abilities of a hybrid of ARIMA with MLP and RNN models, which are called ARIMA-MLP and ARIMA-RNN. Because of the complicated and noisy nature of financial data, we combine novel machine-learning techniques such as MLP and RNN with ARIMA model to predict the three stock market data. The data used in this study are taken from the Pakistan Stock Exchange, National Stock Exchange India, and Sri Lanka Stock Exchange. In the case of Pakistan, the findings show that the ARIMA-MLP and ARIMA-RNN beat the individual ARIMA, MLP, and RNN models in terms of accuracy. Similarly, in the case of Sri Lanka and India, the hybrid models show more robustness in terms of forecasting than individual ARIMA, MLP, and RNN models based on root-mean-square error and mean absolute error. Apart from this, ARIMA-MLP outperformed the ARIMA-RNN in the case of Pakistan and India, while in the context of Sri Lanka, ARIMA-RNN beat the ARIMA-MLP in forecasting. Our findings reveal that the hybrid models can be regarded as a suitable option for financial time-series forecasting.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/5663302.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/5663302.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5663302

DOI: 10.1155/2021/5663302

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:5663302