EconPapers    
Economics at your fingertips  
 

Adaptive Inventory Control Based on Fuzzy Neural Network under Uncertain Environment

Jianqiao Ge and Songtao Zhang

Complexity, 2020, vol. 2020, 1-10

Abstract:

In order to achieve the actual inventory effectively tracking the target inventory under uncertain environment, this paper investigates an adaptive inventory controller for the production-inventory system. First, an uncertain production-inventory model is constructed, and then, the uncertainty of the production-inventory model is approximated by a fuzzy neural network. Secondly, in terms of the design of adaptive control law, the adaptive inventory controller is developed. Under the adaptive inventory controller, the actual inventory can track the target inventory in real time and the production-inventory system can be robustly stable in uncertain environment. Finally, the results of three simulation experiments show that the proposed adaptive inventory controller can realize both the fast tracking speed and the high tracking accuracy.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/6190936.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/6190936.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6190936

DOI: 10.1155/2020/6190936

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:6190936