EconPapers    
Economics at your fingertips  
 

A Modified Salp Swarm Algorithm Based on the Perturbation Weight for Global Optimization Problems

Yuqi Fan, Junpeng Shao, Guitao Sun and Xuan Shao

Complexity, 2020, vol. 2020, 1-17

Abstract:

Metaheuristic algorithms are often applied to global function optimization problems. To overcome the poor real-time performance and low precision of the basic salp swarm algorithm, this paper introduces a novel hybrid algorithm inspired by the perturbation weight mechanism. The proposed perturbation weight salp swarm algorithm has the advantages of a broad search scope and a strong balance between exploration and exploitation and retains a relatively low computational complexity when dealing with numerous large-scale problems. A new coefficient factor is introduced to the basic salp swarm algorithm, and new update strategies for the leader position and the followers are introduced in the search phase. The new leader position updating strategy has a specific bounded scope and strong search performance, thus accelerating the iteration process. The new follower updating strategy maintains the diversity of feasible solutions while reducing the computational load. This paper describes the application of the proposed algorithm to low-dimension and variable-dimension functions. This paper also presents iteration curves, box-plot charts, and search-path graphics to verify the accuracy of the proposed algorithm. The experimental results demonstrate that the perturbation weight salp swarm algorithm offers a better search speed and search balance than the basic salp swarm algorithm in different environments.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/6371085.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/6371085.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6371085

DOI: 10.1155/2020/6371085

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:6371085