Theoretical and Numerical Study for Volterra−Fredholm Fractional Integro-Differential Equations Based on Chebyshev Polynomials of the Third Kind
Zineb Laouar,
Nouria Arar,
Abdellatif Ben Makhlouf and
Lingzhong Guo
Complexity, 2023, vol. 2023, 1-13
Abstract:
In this paper, we develop an efficient numerical method to approximate the solution of fractional integro-differential equations (FI-DEs) of mixed Volterra−Fredholm type using spectral collocation method with shifted Chebyshev polynomials of the third kind (S-Cheb-3). The fractional derivative is described in the Caputo sense. A Chebyshev−Gauss quadrature is involved to evaluate integrals for more precision. Two types of equations are studied to obtain algebraic systems solvable using the Gauss elimination method for linear equations and the Newton algorithm for nonlinear ones. In addition, an error analysis is carried out. Six numerical examples are evaluated using different error values (maximum absolute error, root mean square error, and relative error) to compare the approximate and the exact solutions of each example. The experimental rate of convergence is calculated as well. The results validate the numerical approach’s efficiency, applicability, and performance.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2023/6401067.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2023/6401067.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6401067
DOI: 10.1155/2023/6401067
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().