Exploring Coevolution of Emotional Contagion and Behavior for Microblog Sentiment Analysis: A Deep Learning Architecture
Qi Zhang,
Zufan Zhang,
Maobin Yang,
Lianxiang Zhu and
Luxing Yang
Complexity, 2021, vol. 2021, 1-10
Abstract:
This paper aims to explore coevolution of emotional contagion and behavior for microblog sentiment analysis. Accordingly, a deep learning architecture (denoted as MSA-UITC) is proposed for the target microblog. Firstly, the coevolution of emotional contagion and behavior is described by the tie strength between microblogs, that is, with the spread of emotional contagion, user behavior such as emotional expression will be affected. Then, based on user interaction and the correlation with target microblog, the Hawkes process is adopted to quantify the tie strength between microblogs so as to build the corresponding weighted network. Secondly, in the weighted network, the Deepwalk algorithm is used to build the sequence representation of microblogs which are similar to the target microblog. Next, a CNN-BiLSTM-Attention network (the convolutional neural network and bidirectional long short-term memory network with a multihead attention mechanism) is designed to analyze the sentiment analysis of target and similar microblogs. Finally, the experimental results on two real Twitter datasets demonstrate that the proposed MSA-UITC has advanced performance compared with the existing state-of-the-art methods.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/6630811.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/6630811.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6630811
DOI: 10.1155/2021/6630811
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().