EconPapers    
Economics at your fingertips  
 

Optimized Adaptive Neuro-Fuzzy Inference System Using Metaheuristic Algorithms: Application of Shield Tunnelling Ground Surface Settlement Prediction

Xinni Liu, Sadaam Hadee Hussein, Kamarul Hawari Ghazali, Tran Minh Tung, Zaher Mundher Yaseen and Baogui Xin

Complexity, 2021, vol. 2021, 1-15

Abstract: Deformation of ground during tunnelling projects is one of the complex issues that is required to be monitored carefully to avoid the unexpected damages and human losses. Accurate prediction of ground settlement (GS) is a crucial concern for tunnelling problems, and the adequate predictive model can be a vital tool for tunnel designers to simulate the ground settlement accurately. This study proposes relatively new hybrid artificial intelligence (AI) models to predict the ground settlement of earth pressure balance (EPB) shield tunnelling in the Bangkok MRTA project. The predictive models were various nature-inspired frameworks, such as differential evolution (DE), particle swarm optimization (PSO), genetic algorithm (GA), and ant colony optimizer (ACO) to tune the adaptive neuro-fuzzy inference system (ANFIS). To obtain the accurate and reliable results, the modeling procedure is established based on four different dataset scenarios including (i) preprocessed and normalized (PPN), (ii) preprocessed and nonnormalized (PPNN), (iii) non-preprocessed and normalized (NPN), and (iv) non-preprocessed and nonnormalized (NPNN) datasets. Results indicated that PPN dataset scenario significantly affected the prediction models in terms of their perdition accuracy. Among all the developed hybrid models, ANOFS-PSO model achieved the best predictability performance. In quantitative terms, PPN-ANFIS-PSO model attained the least root mean square error value (RMSE) of 7.98 and a correlation coefficient value (CC) of 0.83. Overall, the attained results confirmed the superiority of the explored hybrid AI models as robust predictive model for ground settlement of earth pressure balance (EPB) shield tunnelling.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/6666699.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/6666699.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6666699

DOI: 10.1155/2021/6666699

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:6666699