EconPapers    
Economics at your fingertips  
 

Transfer Learning and Semisupervised Adversarial Detection and Classification of COVID-19 in CT Images

Ariyo Oluwasanmi, Muhammad Umar Aftab, Zhiguang Qin, Son Tung Ngo, Thang Van Doan, Son Ba Nguyen, Son Hoang Nguyen and Dan Selisteanu

Complexity, 2021, vol. 2021, 1-11

Abstract: The ongoing coronavirus 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a severe ramification on the global healthcare system, principally because of its easy transmission and the extended period of the virus survival on contaminated surfaces. With the advances in computer-aided diagnosis and artificial intelligence, this paper presents the application of deep learning and adversarial network for the automatic identification of COVID-19 pneumonia in computed tomography (CT) scans of the lungs. The complexity and time limitation of the reverse transcription-polymerase chain reaction (RT-PCR) swab test makes it disadvantageous to depend solely on as COVID-19’s central diagnostic mechanism. Since CT imaging systems are of low cost and widely available, we demonstrate that the drawback of the RT-PCR can be alleviated with a faster, automated, and reduced contact diagnostic process via the use of a neural network model for the classification of infected and noninfected CT scans. In our proposed model, we explore the benefit of transfer learning as a means of resolving the problem of inadequate dataset and the importance of semisupervised generative adversarial network for the extraction of well-mapped features and generation of image data. Our experimental evaluation indicates that the proposed semisupervised model achieves reliable classification, taking advantage of the reflective loss distance between the real data sample space and the generated data.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/6680455.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/6680455.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6680455

DOI: 10.1155/2021/6680455

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:6680455