EconPapers    
Economics at your fingertips  
 

Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects

Rashid Naseem, Bilal Khan, Arshad Ahmad, Ahmad Almogren, Saima Jabeen, Bashir Hayat and Muhammad Arif Shah

Complexity, 2020, vol. 2020, 1-21

Abstract:

Software defects prediction at the initial period of the software development life cycle remains a critical and important assignment. Defect prediction and correctness leads to the assurance of the quality of software systems and has remained integral to study in the previous years. The quick forecast of imperfect or defective modules in software development can serve the development squad to use the existing assets competently and effectively to provide remarkable software products in a given short timeline. Hitherto, several researchers have industrialized defect prediction models by utilizing statistical and machine learning techniques that are operative and effective approaches to pinpoint the defective modules. Tree family machine learning techniques are well-thought-out to be one of the finest and ordinarily used supervised learning methods. In this study, different tree family machine learning techniques are employed for software defect prediction using ten benchmark datasets. These techniques include Credal Decision Tree (CDT), Cost-Sensitive Decision Forest (CS-Forest), Decision Stump (DS), Forest by Penalizing Attributes (Forest-PA), Hoeffding Tree (HT), Decision Tree (J48), Logistic Model Tree (LMT), Random Forest (RF), Random Tree (RT), and REP-Tree (REP-T). Performance of each technique is evaluated using different measures, i.e., mean absolute error (MAE), relative absolute error (RAE), root mean squared error (RMSE), root relative squared error (RRSE), specificity, precision, recall, F-measure (FM), G-measure (GM), Matthew’s correlation coefficient (MCC), and accuracy. The overall outcomes of this paper suggested RF technique by producing best results in terms of reducing error rates as well as increasing accuracy on five datasets, i.e., AR3, PC1, PC2, PC3, and PC4. The average accuracy achieved by RF is 90.2238%. The comprehensive outcomes of this study can be used as a reference point for other researchers. Any assertion concerning the enhancement in prediction through any new model, technique, or framework can be benchmarked and verified.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/6688075.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/6688075.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6688075

DOI: 10.1155/2020/6688075

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:6688075