EconPapers    
Economics at your fingertips  
 

Enhancing Stock Price Trend Prediction via a Time-Sensitive Data Augmentation Method

Xiao Teng, Tuo Wang, Xiang Zhang, Long Lan and Zhigang Luo

Complexity, 2020, vol. 2020, 1-8

Abstract:

Stock trend prediction refers to predicting future price trend of stocks for seeking profit maximum of stock investment. Although it has aroused broad attention in stock markets, it is still a tough task not only because the stock markets are complex and easily volatile but also because real short-term stock data is so limited that existing stock prediction models could be far from perfect, especially for deep neural networks. As a kind of time-series data, the underlying patterns of stock data are easily influenced by any tiny noises. Thus, how to augment limited stock price data is an open problem in stock trend prediction, since most data augmentation schemes adopted in image processing cannot be brutally used here. To this end, we devise a simple yet effective time-sensitive data augmentation method for stock trend prediction. To be specific, we augment data by corrupting high-frequency patterns of original stock price data as well as preserving low-frequency ones in the frame of wavelet transformation. The proposed method is motivated by the fact that low-frequency patterns without noisy corruptions do not hurt the true patterns of stock price data. Besides, a transformation technique is proposed to recognize the importance of the patterns at varied time points, that is, the information is time-sensitive. A series of experiments carried out on a real stock price dataset including 50 corporation stocks verify the efficacy of our data augmentation method.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/6737951.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/6737951.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6737951

DOI: 10.1155/2020/6737951

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:6737951