EconPapers    
Economics at your fingertips  
 

Delayed Spiking Neural P Systems with Scheduled Rules

Qianqian Ren, Xiyu Liu and Xinzhi Liu

Complexity, 2021, vol. 2021, 1-13

Abstract: Due to the inevitable delay phenomenon in the process of signal conversion and transmission, time delay is bound to occur between neurons. Therefore, it is necessary to introduce the concept of time delay into the membrane computing models. Spiking neural P systems (SN P systems), as an attractive type of neural-like P systems in membrane computing, are widely followed. Inspired by the phenomenon of time delay, in our work, a new variant of spiking neural P systems called delayed spiking neural P systems (DSN P systems) is proposed. Compared with normal spiking neural P systems, the proposed systems achieve time control by setting the schedule on spiking rules and forgetting rules, and the schedule is also used to realize the system delay. A schedule indicates the time difference between receiving and outputting spikes, and it also makes the system work in a certain time, which means that a rule can only be used within a specified time range. We specify that each rule is performed only in the continuous schedule, during which the neuron is locked and cannot send or receive spikes. If the neuron is not available at a given time, it will not receive or send spikes due to the lack of a schedule for this period of time. Moreover, the universality of DSN P systems in both generating and accepting modes is proved. And a universal DSN P system having 81 neurons for computing functions is also proved.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/6817636.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/6817636.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6817636

DOI: 10.1155/2021/6817636

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:6817636