Weak Quasiperiodic Signal Propagation through Multilayer Feed-Forward Hodgkin–Huxley Neuronal Network
Yuangen Yao,
Bowen Gong,
Daxiang Lu and
Rong Gui
Complexity, 2020, vol. 2020, 1-9
Abstract:
Quasiperiodic signal is ubiquitous and entrenched in neuronal networks, and thus taking it into consideration is necessary. The Wiener process with the intensity of σ is used here to model randomly fluctuated phase in external weak quasiperiodic signal. The departure from the normal periodicity can be governed by the parameter σ . Then, the effects of randomly fluctuated phase of signal and time-periodic coupling intensity of synaptic junctions between neurons on propagation of weak quasiperiodic signal through feed-forward Hodgkin–Huxley network are explored in detail. Increasing σ makes more neurons fire simultaneously, and better synchronous state is observed. Consequently, the external weak quasiperiodic signal introduced into all neurons in the first layer can be effectively transmitted through the whole feed-forward network via synchronization mechanism. In the case of time-periodic synaptic coupling intensity, when oscillatory frequency of synaptic coupling intensity is equal precisely to average frequency of external quasiperiodic signal, the propagation of weak quasiperiodic signal is optimal. Additionally, rapid oscillation of synaptic coupling intensity hinders or even kills the propagation of quasiperiodic signal to great depths of neuronal network, provided σ is not large enough.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/6821591.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/6821591.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6821591
DOI: 10.1155/2020/6821591
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().