Unit Disk Graph-Based Node Similarity Index for Complex Network Analysis
Natarajan Meghanathan
Complexity, 2019, vol. 2019, 1-22
Abstract:
We seek to quantify the extent of similarity among nodes in a complex network with respect to two or more node-level metrics (like centrality metrics). In this pursuit, we propose the following unit disk graph-based approach: we first normalize the values for the node-level metrics (using the sum of the squares approach) and construct a unit disk graph of the network in a coordinate system based on the normalized values of the node-level metrics. There exists an edge between two vertices in the unit disk graph if the Euclidean distance between the two vertices in the normalized coordinate system is within a threshold value (ranging from 0 to , where k is the number of node-level metrics considered). We run a binary search algorithm to determine the minimum value for the threshold distance that would yield a connected unit disk graph of the vertices. We refer to “1 − (minimum threshold distance ) †as the node similarity index (NSI; ranging from 0 to 1) for the complex network with respect to the k node-level metrics considered. We evaluate the NSI values for a suite of 60 real-world networks with respect to both neighborhood-based centrality metrics (degree centrality and eigenvector centrality) and shortest path-based centrality metrics (betweenness centrality and closeness centrality).
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/6871874.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/6871874.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6871874
DOI: 10.1155/2019/6871874
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().