EconPapers    
Economics at your fingertips  
 

Community Detection with Self-Adapting Switching Based on Affinity

Ning-Ning Wang, Zhen Jin and Xiao-Long Peng

Complexity, 2019, vol. 2019, 1-16

Abstract:

Community structures in complex networks play an important role in researching network function. Although there are various algorithms based on affinity or similarity, their drawbacks are obvious. They perform well in strong communities, but perform poor in weak communities. Experiments show that sometimes, community detection algorithms based on a single affinity do not work well, especially for weak communities. So we design a self-adapting switching (SAS) algorithm, where weak communities are detected by combination of two affinities. Compared with some state-of-the-art algorithms, the algorithm has a competitive accuracy and its time complexity is near linear. Our algorithm also provides a new framework of combination algorithm for community detection. Some extensive computational simulations on both artificial and real-world networks confirm the potential capability of our algorithm.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/6946189.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/6946189.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:6946189

DOI: 10.1155/2019/6946189

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:6946189