EconPapers    
Economics at your fingertips  
 

Complexity Analysis on the Aerodynamic Performance of the Mega High-Speed Train Caused by the Wind Barrier on the Embankment

He-xuan Hu, Wan-xin Lei and Ye Zhang

Complexity, 2018, vol. 2018, 1-17

Abstract:

With the world development of high-speed railways and increasing speeds, aerodynamic forces and moments acting on trains have been increased further, making trains stay at a “floated” state. Under a strong crosswind, the aerodynamic performance of a train on the embankment is greatly deteriorated; lift force and horizontal force borne by trains will be increased quickly; trains may suffer derailing or overturning more easily compared with the flat ground; train derailing will take place when the case is serious. All of these phenomena have brought risks to people’s life and properties. Hence, the paper establishes an aerodynamic model about a high-speed train passing an air barrier, computes aerodynamic forces and moments, and analyzes pulsating pressures on the train surface as well as those of unsteady flow fields around the train. Computational results indicate that when the train passed the embankment air barrier, the head wave of air pressure full wave is more than the tail wave; the absolute value of negative wave is more than that of the positive wave, which is more obvious in the head train. When the train is passing the air barrier, pressure pulsation values at head train points are more than those at other points, while pressure changes most violently at the train bottom, and pressure values close to the air barrier are more than those points far from the air barrier. Pressure values at the cross section 1 were larger than those of other points. Pressure values at measurement points of the tail train ranked the second place, with the maximum negative pressure of 1253 Pa. Pressure change amplitudes and maximum negative pressure on the train surface are increased quickly, while pressure peak values on the high-speed train surface are in direct ratio to the running speed. With the increased speed of the high-speed train, when it is running in the embankment air barrier, the aerodynamic force and moment borne by each train body are increased sharply, while the head train suffers the most obvious influences of aerodynamic effects.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/7130532.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/7130532.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:7130532

DOI: 10.1155/2018/7130532

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:7130532