An Interval Efficiency Measurement in DEA When considering Undesirable Outputs
Renbian Mo,
Hongyun Huang and
Liyang Yang
Complexity, 2020, vol. 2020, 1-12
Abstract:
Data envelopment analysis (DEA) is a popular mathematical tool for analyzing the relative efficiency of homogenous decision-making units (DMUs). However, the existing DEA models cannot tackle the newly confronted applications with imprecise and negative data as well as undesirable outputs simultaneously. Thus, we introduce undesirable outputs into modified slack-based measure (MSBM) model and propose an interval-modified slack-based measure (IMSBM) model, which extends the application of interval DEA (IDEA) in fields that concern with less undesirable outputs. The novelties of the model are that it considers the undesirable outputs while dealing with imprecise and negative data, and it is slack-based. Furthermore, the model with undesirable outputs is proven translation-invariant and unit-invariant. Moreover, a numerical example is provided to illustrate the changes of the lower and upper bounds of the efficiency score after considering the undesirable outputs. The empirical results show that, without considering undesirable outputs, most of the lower bounds of the efficiency scores will be overestimated when the DMUs are weakly efficient and inefficient. The upper bound will also change after considering undesirable outputs when the DMU is inefficient. Finally, an improved degree of preference approach is introduced to rank the DMUs.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/7161628.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/7161628.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:7161628
DOI: 10.1155/2020/7161628
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().