A Flexible Polynomial Expansion Method for Response Analysis with Random Parameters
Rugao Gao,
Keping Zhou and
Yun Lin
Complexity, 2018, vol. 2018, 1-14
Abstract:
The generalized Polynomial Chaos Expansion Method (gPCEM), which is a random uncertainty analysis method by employing the orthogonal polynomial bases from the Askey scheme to represent the random space, has been widely used in engineering applications due to its good performance in both computational efficiency and accuracy. But in gPCEM, a nonlinear transformation of random variables should always be used to adapt the generalized Polynomial Chaos theory for the analysis of random problems with complicated probability distributions, which may introduce nonlinearity in the procedure of random uncertainty propagation as well as leading to approximation errors on the probability distribution function (PDF) of random variables. This paper aims to develop a flexible polynomial expansion method for response analysis of the finite element system with bounded random variables following arbitrary probability distributions. Based on the large family of Jacobi polynomials, an Improved Jacobi Chaos Expansion Method (IJCEM) is proposed. In IJCEM, the response of random system is approximated by the Jacobi expansion with the Jacobi polynomial basis whose weight function is the closest to the probability density distribution (PDF) of the random variable. Subsequently, the moments of the response can be efficiently calculated though the Jacobi expansion. As the IJCEM avoids the necessity that the PDF should be represented in terms of the weight function of polynomial basis by using the variant transformation, neither the nonlinearity nor the errors on random models will be introduced in IJCEM. Numerical examples on two random problems show that compared with gPCEM, the IJCEM can achieve better efficiency and accuracy for random problems with complex probability distributions.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/7471460.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/7471460.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:7471460
DOI: 10.1155/2018/7471460
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().