A Chinese Named Entity Recognition Model of Maintenance Records for Power Primary Equipment Based on Progressive Multitype Feature Fusion
Lanfei He,
Xuefei Zhang,
Zhiwei Li,
Peng Xiao,
Ziming Wei,
Xu Cheng,
Shaocheng Qu and
Manman Yuan
Complexity, 2022, vol. 2022, 1-11
Abstract:
Presently, the State Grid Corporation of China has accumulated a large amount of maintenance records for power primary equipment. Unfortunately, most of these records are unstructured data which lead to difficultly analyze and utilize them. The emergence of natural language processing technology and deep learning methods provide a solution for unstructured text data. This paper proposes a progressive multitype feature fusion model to recognize Chinese named entity of unstructured maintenance records for power primary equipment. Firstly, the textual characteristics and word separation difficulties of maintenance records are analyzed, then 7 main entity categories of power technical terms from unstructured maintenance records are chosen, and 3452 maintenance records are labeled by these categories, which is so called EPE-MR training dataset. Secondly, the standard test reports, standard maintenance, and fault analysis reports for three types of power primary equipment (namely, main transformer, circuit breaker, and isolating switch) are employed as corpus to train character embedding in order to obtain certain words representation ability of maintenance records. After that, progressive multilevel radicals feature extraction module is designed to get detailed and fine semantic information in a hierarchical manner. Further, radicals feature representation and character embedding are concatenated and sent to BiLSTM module to extract contextual information in order to improve Chinese entity recognition ability. Moreover, CRF is introduced to handle the dependencies among prediction labels and to output the optimal prediction sequence, which can easily obtain structured data of maintenance records. Finally, comparative experiments on public MSRA dataset, China People’s Daily corpus, and EPE-MR dataset are implemented, respectively, which show the effectiveness of the proposed method.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2022/8114217.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2022/8114217.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8114217
DOI: 10.1155/2022/8114217
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().