Cognitive Driven Multilayer Self-Paced Learning with Misclassified Samples
Qi Zhu,
Ning Yuan and
Donghai Guan
Complexity, 2019, vol. 2019, 1-10
Abstract:
In recent years, self-paced learning (SPL) has attracted much attention due to its improvement to nonconvex optimization based machine learning algorithms. As a methodology introduced from human learning, SPL dynamically evaluates the learning difficulty of each sample and provides the weighted learning model against the negative effects from hard-learning samples. In this study, we proposed a cognitive driven SPL method, i.e., retrospective robust self-paced learning (R2SPL), which is inspired by the following two issues in human learning process: the misclassified samples are more impressive in upcoming learning, and the model of the follow-up learning process based on large number of samples can be used to reduce the risk of poor generalization in initial learning phase. We simultaneously estimated the degrees of learning-difficulty and misclassified in each step of SPL and proposed a framework to construct multilevel SPL for improving the robustness of the initial learning phase of SPL. The proposed method can be viewed as a multilayer model and the output of the previous layer can guide constructing robust initialization model of the next layer. The experimental results show that the R2SPL outperforms the conventional self-paced learning models in classification task.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/8127869.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/8127869.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8127869
DOI: 10.1155/2019/8127869
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().