EconPapers    
Economics at your fingertips  
 

Sensor Fault Diagnosis Based on Fuzzy Neural Petri Net

Jiming Li, Xiaolin Zhu and Xuezhen Cheng

Complexity, 2018, vol. 2018, 1-11

Abstract:

This study aims to improve the operating stability of the resistance strain weighing sensor and eliminate fuzzy factors in fault diagnosis. Based on fuzzy techniques for fault diagnosis, the proposed fuzzy Petri net model uses the fault logical relationship between a sensor and an improved Petri net model. A formula for confidence-based reasoning is proposed using an algorithm, which combines neural network regulation algorithm with a transition-enabled ignition judgment matrix. This formula can yield an accurate assessment of the operating state of the sensor. Backward inference and the minimum cut set theory are also combined to obtain the priority of faults, which helps avoid blind and ambiguous maintenance. The sensor model was analyzed, and its accuracy and validity were verified through statistical analysis and comparison with other methods of fault diagnosis.

Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/8261549.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/8261549.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8261549

DOI: 10.1155/2018/8261549

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:8261549