EconPapers    
Economics at your fingertips  
 

Adaptive-Neural-Network-Based Shape Control for a Swarm of Robots

Xuejing Lan, Zhenghao Wu, Wenbiao Xu and Guiyun Liu

Complexity, 2018, vol. 2018, 1-8

Abstract:

This paper considers the region-based formation control for a swarm of robots with unknown nonlinear dynamics and disturbances. An adaptive neural network is designed to approximate the unknown nonlinear dynamics, and the desired formation shape is achieved by designing appropriate potential functions. Moreover, the collision avoidance, velocity consensus, and region tracking are all considered in the controller. The stability of the multirobot system has been demonstrated based on the Lyapunov theorem. Finally, three numerical simulations show the effectiveness of the proposed formation control scheme to deal with the narrow space, loss of robots, and formation merging problems.

Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/8382702.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/8382702.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8382702

DOI: 10.1155/2018/8382702

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:8382702