EconPapers    
Economics at your fingertips  
 

Unsupervised Domain Adaptation Using Exemplar-SVMs with Adaptation Regularization

Yiwei He, Yingjie Tian, Jingjing Tang and Yue Ma

Complexity, 2018, vol. 2018, 1-13

Abstract:

Domain adaptation has recently attracted attention for visual recognition. It assumes that source and target domain data are drawn from the same feature space but different margin distributions and its motivation is to utilize the source domain instances to assist in training a robust classifier for target domain tasks. Previous studies always focus on reducing the distribution mismatch across domains. However, in many real-world applications, there also exist problems of sample selection bias among instances in a domain; this would reduce the generalization performance of learners. To address this issue, we propose a novel model named Domain Adaptation Exemplar Support Vector Machines (DAESVMs) based on exemplar support vector machines (exemplar-SVMs). Our approach aims to address the problems of sample selection bias and domain adaptation simultaneously. Comparing with usual domain adaptation problems, we go a step further in slacking the assumption of i.i.d. First, we formulate the DAESVMs training classifiers with reducing Maximum Mean Discrepancy (MMD) among domains by mapping data into a latent space and preserving properties of original data, and then, we integrate classifiers to make a prediction for target domain instances. Our experiments were conducted on Office and Caltech10 datasets and verify the effectiveness of the model we proposed.

Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/8425821.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/8425821.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8425821

DOI: 10.1155/2018/8425821

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:8425821