An Exponential Varying-Parameter Neural Network for Repetitive Tracking of Mobile Manipulators
Ying Kong,
Qingqing Tang,
Jingsheng Lei and
Ruiyang Zhang
Complexity, 2020, vol. 2020, 1-12
Abstract:
A novel exponential varying-parameter neural network (EVPNN) is presented and investigated to solve the inverse redundancy scheme of the mobile manipulators via quadratic programming (QP). To suspend the phenomenon of drifting free joints and guarantee high convergent precision of the end effector, the EVPNN model is applied to trajectory planning of mobile manipulators. Firstly, the repetitive motion scheme for mobile manipulators is formulated into a QP index. Secondly, the QP index is transformed into a time-varying matrix equation. Finally, the proposed EVPNN method is used to solve the QP index via the matrix equation. Theoretical analysis and simulations illustrate that the EVPNN solver has an exponential convergent speed and strong robustness in mobile manipulator applications. Comparative simulation results demonstrate that the EVPNN possesses a superior convergent rate and accuracy than the traditional ZNN solver in repetitive trajectory planning with a mobile manipulator.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/8520835.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/8520835.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8520835
DOI: 10.1155/2020/8520835
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().