EconPapers    
Economics at your fingertips  
 

Big Data Analytics for Complex Credit Risk Assessment of Network Lending Based on SMOTE Algorithm

Aiwen Niu, Bingqing Cai and Shousong Cai

Complexity, 2020, vol. 2020, 1-9

Abstract:

With the continuous development of big data technology, the data of online lending platform witness explosive development. How to give full play to the advantages of data, establish a credit risk assessment model, and realize the effective control of platform credit risk have become the focus of online lending platform. In view of the fact that the network loan data are mainly unbalanced data, the smote algorithm is helpful to optimize the model and improve the evaluation performance of the model. Relevant research shows that stochastic forest model has higher applicability in credit risk assessment, and cart, ANN, C4.5, and other algorithms are also widely used. In the influencing factors of credit evaluation, the weight of the applicant’s enterprise scale, working years, historical records, credit score, and other indicators is relatively high, while the index weight of marriage and housing/car production (loan) is relatively low.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/8563030.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/8563030.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8563030

DOI: 10.1155/2020/8563030

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:8563030