Channel Optimization of Marketing Based on Users’ Social Network Information
Chaolin Peng
Complexity, 2020, vol. 2020, 1-10
Abstract:
Marketing in the social network environment integrates current advanced internet and information technologies. This marketing method not only broadens marketing channels and builds a network communication platform but also meets the purchase needs of customers in the entire market and shortens customer purchases. The process is also an inevitable product of the development of the times. However, when companies use social networks for product marketing, they usually face the impact of multiple realistic factors. This article takes the maximization of influence as the main idea to find seed users for product information dissemination and also considers the users’ interest preferences. The target users can influence the product, and the company should control marketing costs to obtain a larger marginal benefit. Based on this, this paper considers factors such as the scale of information diffusion, user interest preferences, and corporate budgets, takes the influence maximization model as a multiobjective optimization problem, and proposes a multiobjective maximization of influence (MOIM) model. To solve the NP-hard problem of maximizing influence, this paper uses Monte Carlo sampling to calculate high-influence users. Next, a seed user selection algorithm based on NSGA-II is proposed to optimize the above three objective functions and find the optimal solution. We use real social network data to verify the performance of models and methods. Experiments show that the proposed model can generate appropriate seed sets and can meet different purposes of information dissemination. Sensitivity analysis proves that our model is robust under different actual conditions.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/8833780.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/8833780.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8833780
DOI: 10.1155/2020/8833780
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().