EconPapers    
Economics at your fingertips  
 

Deep Belief Network-Based Multifeature Fusion Music Classification Algorithm and Simulation

Tianzhuo Gong and Wei Wang

Complexity, 2021, vol. 2021, 1-10

Abstract: In this paper, the multifeature fusion music classification algorithm and its simulation results are studied by deep confidence networks, the multifeature fusion music database is established and preprocessed, and then features are extracted. The simulation is carried out using multifeature fusion music data. The multifeature fusion music preprocessing includes endpoint detection, framing, windowing, and pre-emphasis. In this paper, we extracted the rhythm features, sound quality features, and spectral features, including energy, cross-zero rate, fundamental frequency, harmonic noise ratio, and 12 statistical features, including maximum value, mean value, and linear slope. A total of 384-dimensional statistical features was extracted and compared with the classification ability of different emotional features. The deficiencies of the traditional classification algorithm are first studied, and then by introducing confusion, constructing multilevel classifiers, and tuning each level of the classifier, better recognition rates than traditional primary classification are obtained. This paper introduces label information for supervised training to further improve the features of multifunctional fusion music. Experiments show that this information has excellent performance in multifunctional fusion music recognition. The experiments compare the multilevel classifier with primary classification, and the multilevel classification with the primary classification and the classification performance is improved, and the recognition rate of the multilevel classification algorithm is also improved over the multilevel classification algorithm, proving that the excellent performance with multiple levels of classification.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/8861896.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/8861896.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8861896

DOI: 10.1155/2021/8861896

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:8861896