Fault Detection of the Power System Based on the Chaotic Neural Network and Wavelet Transform
Zuoxun Wang and
Liqiang Xu
Complexity, 2020, vol. 2020, 1-15
Abstract:
The safety and stability of the power supply system are affected by some faults that often occur in power system. To solve this problem, a criterion algorithm based on the chaotic neural network (CNN) and a fault detection algorithm based on discrete wavelet transform (DWT) are proposed in this paper. MATLAB/Simulink is used to establish the system model to output fault signals and travelling wave signals. Db4 wavelet decomposes the travelling wave signals into detail signals and approximate signals, and these signals are combined with the two-terminal travelling wave location method to achieve fault location. And the wavelet detail coefficients are extracted to input to the proposed chaotic neural network. The results show that the criterion algorithm can effectively determine whether there are faults in the power system, the fault detection algorithm has the capabilities of locating the system faults accurately, and both algorithms are not affected by fault type, fault location, fault initial angle, and transition resistance.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/8884786.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/8884786.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8884786
DOI: 10.1155/2020/8884786
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().