EconPapers    
Economics at your fingertips  
 

Accurate Recognition and Simulation of 3D Visual Image of Aerobics Movement

Wenhua Fan and Hyun Joo Min

Complexity, 2020, vol. 2020, 1-11

Abstract:

The structure of the deep artificial neural network is similar to the structure of the biological neural network, which can be well applied to the 3D visual image recognition of aerobics movements. A lot of results have been achieved by applying deep neural networks to the 3D visual image recognition of aerobics movements, but there are still many problems to be overcome. After analyzing the expression characteristics of the convolutional neural network model for the three-dimensional visual image characteristics of aerobics, this paper builds a convolutional neural network model. The model is improved on the basis of the traditional model and unifies the process of aerobics 3D visual image segmentation, target feature extraction, and target recognition. The convolutional neural network and the deep neural network based on autoencoder are designed and applied to aerobics action 3D visual image test set for recognition and comparison. We improve the accuracy of network recognition by adjusting the configuration parameters in the network model. The experimental results show that compared with other simple models, the model based on the improved AdaBoost algorithm can improve the final result significantly when the accuracy of each model is average. Therefore, the method can improve the recognition accuracy when multiple neural network models with general accuracy are obtained, thereby avoiding the complicated parameter adjustment process to obtain a single optimal network model.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/8889008.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/8889008.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8889008

DOI: 10.1155/2020/8889008

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:8889008