EconPapers    
Economics at your fingertips  
 

Attribute Reduction Based on Consistent Covering Rough Set and Its Application

Jianchuan Bai, Kewen Xia, Yongliang Lin and Panpan Wu

Complexity, 2017, vol. 2017, 1-9

Abstract:

As an important processing step for rough set theory, attribute reduction aims at eliminating data redundancy and drawing useful information. Covering rough set, as a generalization of classical rough set theory, has attracted wide attention on both theory and application. By using the covering rough set, the process of continuous attribute discretization can be avoided. Firstly, this paper focuses on consistent covering rough set and reviews some basic concepts in consistent covering rough set theory. Then, we establish the model of attribute reduction and elaborate the steps of attribute reduction based on consistent covering rough set. Finally, we apply the studied method to actual lagging data. It can be proved that our method is feasible and the reduction results are recognized by Least Squares Support Vector Machine (LS-SVM) and Relevance Vector Machine (RVM). Furthermore, the recognition results are consistent with the actual test results of a gas well, which verifies the effectiveness and efficiency of the presented method.

Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2017/8986917.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2017/8986917.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:8986917

DOI: 10.1155/2017/8986917

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:8986917