EconPapers    
Economics at your fingertips  
 

Stock Price Prediction Based on Natural Language Processing1

Xiaobin Tang, Nuo Lei, Manru Dong, Dan Ma and Atila Bueno

Complexity, 2022, vol. 2022, 1-15

Abstract: The keywords used in traditional stock price prediction are mainly based on literature and experience. This study designs a new text mining method for keywords augmentation based on natural language processing models including Bidirectional Encoder Representation from Transformers (BERT) and Neural Contextualized Representation for Chinese Language Understanding (NEZHA) natural language processing models. The BERT vectorization and the NEZHA keyword discrimination models extend the seed keywords from two dimensions of similarity and importance, respectively, thus constructing the keyword thesaurus for stock price prediction. Furthermore, the predictive ability of seed words and our generated words are compared by the LSTM model, taking the CSI 300 as an example. The result shows that, compared with seed keywords, the search indexes of extracted words have higher correlations with CSI 300 and can improve its forecasting performance. Therefore, the keywords augmentation model designed in this study is helpful to provide references for other variable expansion in financial time series forecasting.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2022/9031900.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2022/9031900.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9031900

DOI: 10.1155/2022/9031900

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:9031900