EconPapers    
Economics at your fingertips  
 

Identification of Wiener Model with Internal Noise Using a Cubic Spline Approximation-Bayesian Composite Quantile Regression Algorithm

Tianhong Pan, Wei Guo, Ying Song and Fujia Yin

Complexity, 2020, vol. 2020, 1-8

Abstract:

A cubic spline approximation-Bayesian composite quantile regression algorithm is proposed to estimate parameters and structure of the Wiener model with internal noise. Firstly, an ARX model with a high order is taken to represent the linear block; meanwhile, the nonlinear block (reversibility) is approximated by a cubic spline function. Then, parameters are estimated by using the Bayesian composite quantile regression algorithm. In order to reduce the computational burden, the Markov Chain Monte Carlo algorithm is introduced to calculate the expectation of parameters’ posterior distribution. To determine the structure order, the Final Output Error and the Akaike Information Criterion are used in the nonlinear block and the linear block, respectively. Finally, a numerical simulation and an industrial case verify the effectiveness of the proposed algorithm.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/9195819.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/9195819.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9195819

DOI: 10.1155/2020/9195819

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:9195819