Quantifying Evolution of Short and Long-Range Correlations in Chinese Narrative Texts across 2000 Years
Heng Chen and
Haitao Liu
Complexity, 2018, vol. 2018, 1-12
Abstract:
We investigate how short and long-range word length correlations evolve in Chinese narrative texts. The results show that, for short-range word length correlations, no significant linear evolutionary trend was found. But for long-range correlations, there are two opposite tendencies for two different regimes: the Hurst exponent of small-scale (box size ranges from 10 to 100) word length correlations decreases over time, and the exponent of large-scale (box size ranges from 101 to 1000) shows an increasing tendency. The increase of word length is corroborated as an essential regularity of word evolution in written Chinese. Further analyses show that a significant correlation coefficient is obtained between Hurst exponents from the small-scale correlations and mean word length across time. These indicate that word length correlation evolution possesses different self-adaptive mechanisms in terms of different scales of distances between words. We speculate that the increase of word length and sentence length in written Chinese may account for this phenomenon, in terms of both the social-cultural aspects and the self-adapting properties of language structures.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/9362468.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/9362468.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9362468
DOI: 10.1155/2018/9362468
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().