EconPapers    
Economics at your fingertips  
 

Extreme Gradient Boosting Algorithm for Predicting Shear Strengths of Rockfill Materials

Mahmood Ahmad, Ramez A. Al-Mansob, Kazem Reza Kashyzadeh, Suraparb Keawsawasvong, Mohanad Muayad Sabri Sabri, Irfan Jamil, Arnold C. Alguno and Andrea Murari

Complexity, 2022, vol. 2022, 1-11

Abstract: For the safe and economical construction of embankment dams, the mechanical behaviour of the rockfill materials used in the dam’s shell must be analyzed. The characterization of rockfill materials with specified shear strength is difficult and expensive due to the presence of particles greater than 500 mm in diameter. This work investigates the feasibility of using an extreme gradient boosting (XGBoost) computing paradigm to estimate the shear strength of rockfill materials. To train and validate the proposed XGBoost model, a total of 165 databases obtained from the literature are chosen. The XGBoost model was compared against support vector machine (SVM), adaptive boosting (AdaBoost), random forest (RF), and K-nearest neighbor (KNN) models described in the literature. XGBoost beats SVM, RF, AdaBoost, and KNN models in terms of performance evaluation metrics such as coefficient of determination (R2), Nash–Sutcliffe coefficient (NSE), and error in the root mean square ratio (RMSE) to the standard deviation of the measured data (RSR). The results demonstrated that the XGBoost model has the highest prediction performance with (R2 = 0.9707, NSE = 0.9701, and RSR = 0.1729), followed by the SVM model with (R2 = 0.9655, NSE = 0.9639, and RSR = 0.1899), RF (R2 = 0.9545, NSE = 0.9542, and RSR = 0.2140), the AdaBoost model with (R2 = 0.9390, NSE = 0.9388, and RSR = 0.2474) and the KNN model with (R2 = 0.6233, NSE = 0.6180, and RSR = 0.6181). A sensitivity analysis has been conducted to ascertain the impact of each investigated input parameter. This study demonstrates that the established XGBoost model for estimating the shear strength of rockfill materials is reliable.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2022/9415863.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2022/9415863.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9415863

DOI: 10.1155/2022/9415863

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:9415863