Virtual Submerged Floating Operational System for Robotic Manipulation
Qin Zhang,
Jialei Zhang,
Ahmed Chemori and
Xianbo Xiang
Complexity, 2018, vol. 2018, 1-18
Abstract:
In this work, a virtual submerged floating operational system (VSFOS) based on parallel and serial robotic platforms is proposed. The primary aim behind its development lies in carrying out simulated underwater manipulation experiments in an easier and safer way. This VSFOS is consisted of a six-degree-of-freedom (6-DOF) parallel platform, an ABB serial manipulator, an inertial sensor, and a real-time industrial computer. The 6-DOF platform is used to simulate the movement of an underwater vehicle, whose attitude is measured by the inertial sensor. The ABB manipulator, controlled by the real-time industrial computer, works as an operational tool to perform underwater manipulation tasks. In the control system architecture, software is developed to receive the data collected by the inertial sensor, to communicate and send instructions. Furthermore, the real-time status of the manipulator is displayed in this software. To validate the proposed system, two experiments have been conducted to test its performance. In the first experiment, the test is carried out to check the communication function of VSFOS, while in the second one, the manipulator is intended to follow the movement of the parallel platform and perform simulated operational task in the space. The obtained results from these two experiments show clearly the effectiveness and the performance of the proposed VSFOS.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/9528313.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/9528313.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9528313
DOI: 10.1155/2018/9528313
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().