A New Image Encryption Scheme Based on Hybrid Chaotic Maps
Ibrahim Yasser,
Fahmi Khalifa,
Mohamed A. Mohamed and
Ahmed S. Samrah
Complexity, 2020, vol. 2020, 1-23
Abstract:
Chaos-based encryption algorithms offer many advantages over conventional cryptographic algorithms, such as speed, high security, affordable overheads for computation, and procedure power. In this paper, we propose a novel perturbation algorithm for data encryption based on double chaotic systems. A new image encryption algorithm based on the proposed chaotic maps is introduced. The proposed chaotification method is a hybrid technique that parallels and combines the chaotic maps. It is based on combination between Discrete Wavelet Transform (DWT) to decompose the original image into sub-bands and both permutation and diffusion properties are attained using the chaotic states and parameters of the proposed maps, which are then concerned in shuffling of pixel and operations of substitution, respectively. Security, statistical test analyses, and comparison with other techniques indicate that the proposed algorithm has promising effect and it can resist several common attacks. Namely, the average values for UACI and NPCR metrics were 33.6248% and 99.6472%, respectively. Additionally, unscrambling quality can fulfill security and execution prerequisites as evidenced by PSNR (9.005955) and entropy (7.999275) values. In sum, the proposed method has enough ability to achieve low residual intelligibility with high quality recovered data, high sensitivity, and high security performance compared to some other recent literature approaches.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/9597619.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/9597619.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9597619
DOI: 10.1155/2020/9597619
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().