Research on Hybrid Wind Speed Prediction System Based on Artificial Intelligence and Double Prediction Scheme
Ying Nie,
He Bo,
Weiqun Zhang and
Haipeng Zhang
Complexity, 2020, vol. 2020, 1-22
Abstract:
Wind energy analysis and wind speed modeling have a significant impact on wind power generation systems and have attracted significant attention from many researchers in recent decades. Based on the inherent characteristics of wind speed, such as nonlinearity and randomness, the prediction of wind speed is considered to be a challenging task. Previous studies have only considered point prediction or interval measurement of wind speed separately and have not combined these two methods for prediction and analysis. In this study, we developed a novel hybrid wind speed double prediction system comprising a point prediction module and interval prediction module to compensate for the shortcomings of existing research. Regarding point prediction in the developed double prediction system, a novel nonlinear integration method based on a backpropagation network optimized using the multiobjective evolutionary algorithm based on decomposition was successfully implemented to derive the final prediction results, which enable further improvement of the accuracy of point prediction. Based on point prediction results, we propose an interval prediction method that constructs different intervals according to the classification of different data features via fuzzy clustering, which provides reliable interval prediction results. The experimental results demonstrate that the proposed system outperforms existing methods in engineering applications and can be used as an effective technology for power system planning.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/9601763.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/9601763.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9601763
DOI: 10.1155/2020/9601763
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().