A Novel Graphical Technique for Combinational Logic Representation and Optimization
Vedhas Pandit and
Björn Schuller
Complexity, 2017, vol. 2017, 1-12
Abstract:
We present a new technique for defining, analysing, and simplifying digital functions, through hand-calculations, easily demonstrable therefore in the classrooms. It can be extended to represent discrete systems beyond the Boolean logic. The method is graphical in nature and provides complete ‘‘implementation-free” description of the logical functions, similar to binary decision diagrams (BDDs) and Karnaugh-maps (K-maps). Transforming a function into the proposed representations (also the inverse) is a very intuitive process, easy enough that a person can hand-calculate these transformations. The algorithmic nature allows for its computing-based implementations. Because the proposed technique effectively transforms a function into a scatter plot, it is possible to represent multiple functions simultaneously. Usability of the method, therefore, is constrained neither by the number of inputs of the function nor by its outputs in theory. This, being a new paradigm, offers a lot of scope for further research. Here, we put forward a few of the strategies invented so far for using the proposed representation for simplifying the logic functions. Finally, we present extensions of the method: one that extends its applicability to multivalued discrete systems beyond Boolean functions and the other that represents the variants in terms of the coordinate system in use.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2017/9696342.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2017/9696342.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9696342
DOI: 10.1155/2017/9696342
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().