On Fault-Tolerant Resolving Sets of Some Families of Ladder Networks
Hua Wang,
Muhammad Azeem,
Muhammad Faisal Nadeem,
Ata Ur-Rehman,
Adnan Aslam and
Muhammad Javaid
Complexity, 2021, vol. 2021, 1-6
Abstract:
In computer networks, vertices represent hosts or servers, and edges represent as the connecting medium between them. In localization, some special vertices (resolving sets) are selected to locate the position of all vertices in a computer network. If an arbitrary vertex stopped working and selected vertices still remain the resolving set, then the chosen set is called as the fault-tolerant resolving set. The least number of vertices in such resolving sets is called the fault-tolerant metric dimension of the network. Because of the variety of applications of the metric dimension in different areas of sciences, many generalizations were proposed, and fault tolerant is one of them. In this paper, we computed the fault-tolerant metric dimension of triangular snake, ladder, Mobius ladder, and hexagonal ladder networks. It is important to observe that, in all these classes of networks, the fault-tolerant metric dimension and metric dimension differ by 1.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/9939559.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/9939559.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9939559
DOI: 10.1155/2021/9939559
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().