EconPapers    
Economics at your fingertips  
 

Hybrid Deep Learning Models for Sentiment Analysis

Cach N. Dang, María N. Moreno-García, Fernando De la Prieta and Tao Jia

Complexity, 2021, vol. 2021, 1-16

Abstract: Sentiment analysis on public opinion expressed in social networks, such as Twitter or Facebook, has been developed into a wide range of applications, but there are still many challenges to be addressed. Hybrid techniques have shown to be potential models for reducing sentiment errors on increasingly complex training data. This paper aims to test the reliability of several hybrid techniques on various datasets of different domains. Our research questions are aimed at determining whether it is possible to produce hybrid models that outperform single models with different domains and types of datasets. Hybrid deep sentiment analysis learning models that combine long short-term memory (LSTM) networks, convolutional neural networks (CNN), and support vector machines (SVM) are built and tested on eight textual tweets and review datasets of different domains. The hybrid models are compared against three single models, SVM, LSTM, and CNN. Both reliability and computation time were considered in the evaluation of each technique. The hybrid models increased the accuracy for sentiment analysis compared with single models on all types of datasets, especially the combination of deep learning models with SVM. The reliability of the latter was significantly higher.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/9986920.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/9986920.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9986920

DOI: 10.1155/2021/9986920

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:9986920