EconPapers    
Economics at your fingertips  
 

Radial Symmetry and Monotonicity of Solutions to a System Involving Fractional p-Laplacian in a Ball

Linfen Cao, Xiaoshan Wang and Zhaohui Dai

Advances in Mathematical Physics, 2018, vol. 2018, 1-6

Abstract:

In this paper, we study a nonlinear system involving the fractional p-Laplacian in a unit ball and establish the radial symmetry and monotonicity of its positive solutions. By using the direct method of moving planes, we prove the following result. For , if and satisfy the following nonlinear system and are nonnegative continuous functions satisfying the following: (i) and are increasing for ; (ii) , are bounded near . Then the positive solutions must be radially symmetric and monotone decreasing about the origin.

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/AMP/2018/1565731.pdf (application/pdf)
http://downloads.hindawi.com/journals/AMP/2018/1565731.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlamp:1565731

DOI: 10.1155/2018/1565731

Access Statistics for this article

More articles in Advances in Mathematical Physics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnlamp:1565731