Fully Discrete Local Discontinuous Galerkin Approximation for Time-Space Fractional Subdiffusion/Superdiffusion Equations
Meilan Qiu,
Liquan Mei and
Dewang Li
Advances in Mathematical Physics, 2017, vol. 2017, 1-20
Abstract:
We focus on developing the finite difference (i.e., backward Euler difference or second-order central difference)/local discontinuous Galerkin finite element mixed method to construct and analyze a kind of efficient, accurate, flexible, numerical schemes for approximately solving time-space fractional subdiffusion/superdiffusion equations. Discretizing the time Caputo fractional derivative by using the backward Euler difference for the derivative parameter ( ) or second-order central difference method for ( ), combined with local discontinuous Galerkin method to approximate the spatial derivative which is defined by a fractional Laplacian operator, two high-accuracy fully discrete local discontinuous Galerkin (LDG) schemes of the time-space fractional subdiffusion/superdiffusion equations are proposed, respectively. Through the mathematical induction method, we show the concrete analysis for the stability and the convergence under the norm of the LDG schemes. Several numerical experiments are presented to validate the proposed model and demonstrate the convergence rate of numerical schemes. The numerical experiment results show that the fully discrete local discontinuous Galerkin (LDG) methods are efficient and powerful for solving fractional partial differential equations.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/AMP/2017/4961797.pdf (application/pdf)
http://downloads.hindawi.com/journals/AMP/2017/4961797.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:jnlamp:4961797
DOI: 10.1155/2017/4961797
Access Statistics for this article
More articles in Advances in Mathematical Physics from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().