EconPapers    
Economics at your fingertips  
 

Big Data Clustering Analysis Algorithm for Internet of Things Based on K-Means

Zhanqiu Yu
Additional contact information
Zhanqiu Yu: Anhui Technical College of Industry and Economy, Hefei, China

International Journal of Distributed Systems and Technologies (IJDST), 2019, vol. 10, issue 1, 1-12

Abstract: To explore the Internet of things logistics system application, an Internet of things big data clustering analysis algorithm based on K-mans was discussed. First of all, according to the complex event relation and processing technology, the big data processing of Internet of things was transformed into the extraction and analysis of complex relational schema, so as to provide support for simplifying the processing complexity of big data in Internet of things (IOT). The traditional K-means algorithm was optimized and improved to make it fit the demand of big data RFID data network. Based on Hadoop cloud cluster platform, a K-means cluster analysis was achieved. In addition, based on the traditional clustering algorithm, a center point selection technology suitable for RFID IOT data clustering was selected. The results showed that the clustering efficiency was improved to some extent. As a result, an RFID Internet of things clustering analysis prototype system is designed and realized, which further tests the feasibility.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJDST.2019010101 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jdst00:v:10:y:2019:i:1:p:1-12

Access Statistics for this article

International Journal of Distributed Systems and Technologies (IJDST) is currently edited by Nik Bessis

More articles in International Journal of Distributed Systems and Technologies (IJDST) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jdst00:v:10:y:2019:i:1:p:1-12