Efficient Prediction of Stock Price Using Artificial Neural Network Optimized Using Biogeography-Based Optimization Algorithm
Hitesh Punjabi and
Kumar Chandar S.
Additional contact information
Hitesh Punjabi: Somaiya Institute of Technology, India
Kumar Chandar S.: CHRIST University (Deemed), India
International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), 2021, vol. 17, issue 7, 1-14
Abstract:
Stock market price prediction has always draws more attention from researchers and analysts. Prediction of stock price is extremely tough task due to the nature of stock data. Therefore, it is needed to develop an efficient model for predicting stock price. This paper explored the use of Feed Forward Neural Network (FFNN) and bio inspired algorithms to develop two efficient models for prediction. The proposed model is based on the ten indicators derived from historical data. Particle Swarm Optimization (PSO) algorithm which inspired from the behavior of bird flocking and Biogeography Based Optimization (BBO) algorithm driven by the geographical distribution of biological organisms is adopted to optimize the parameters of FFNN. Prediction ability of the proposed models is evaluated by using statistical measures. The experimental results demonstrate that the proposed BBO-FFNN is superior to PSO-FFNN and existing methods taken for comparison in terms of prediction accuracy. It is proved that the proposed BBO-FFNN can effectively enhance stock prediction and reduce the prediction error.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJWLTT.303112 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jwltt0:v:17:y:2021:i:7:p:1-14
Access Statistics for this article
International Journal of Web-Based Learning and Teaching Technologies (IJWLTT) is currently edited by Mahesh S. Raisinghani
More articles in International Journal of Web-Based Learning and Teaching Technologies (IJWLTT) from IGI Global
Bibliographic data for series maintained by Journal Editor ().