Enhanced SCADA IDS Security by Using MSOM Hybrid Unsupervised Algorithm
Sangeetha K.,
Shitharth S. and
Gouse Baig Mohammed
Additional contact information
Sangeetha K.: Kebri Dehar University, Kebri Dehar, Ethiopia
Shitharth S.: Kebri Dehar University, Kebri Dehar, Ethiopia
Gouse Baig Mohammed: Vardhaman College of Engineering, India
International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), 2022, vol. 17, issue 2, 1-9
Abstract:
In Self-Organizing Maps (SOM) are unsupervised neural networks that cluster high dimensional data and transform complex inputs into easily understandable inputs. To find the closest distance and weight factor, it maps high dimensional input space to low dimensional input space. The Closest node to data point is denoted as a neuron. It classifies the input data based on these neurons. The reduction of dimensionality and grid clustering using neurons makes to observe similarities between the data. In our proposed Mutated Self Organizing Maps (MSOM) approach, we have two intentions. One is to eliminate the learning rate and to decrease the neighborhood size and the next one is to find out the outliers in the network. The first one is by calculating the median distance (MD) between each node with its neighbor nodes. Then those median values are compared with one another. In case, if any of the MD values significantly varies from the rest then it is declared as anomaly nodes. In the second phase, we find out the quantization error (QE) in each instance from the cluster center.
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... /IJWLTT.20220301.oa2 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jwltt0:v:17:y:2022:i:2:p:1-9
Access Statistics for this article
International Journal of Web-Based Learning and Teaching Technologies (IJWLTT) is currently edited by Mahesh S. Raisinghani
More articles in International Journal of Web-Based Learning and Teaching Technologies (IJWLTT) from IGI Global
Bibliographic data for series maintained by Journal Editor ().