EconPapers    
Economics at your fingertips  
 

Stochastic Decomposition for Two-Stage Stochastic Linear Programs with Random Cost Coefficients

Harsha Gangammanavar (), Yifan Liu () and Suvrajeet Sen ()
Additional contact information
Harsha Gangammanavar: Southern Methodist University, Dallas, Texas 75275
Yifan Liu: 84.51°, Cincinnati, Ohio 45202;
Suvrajeet Sen: University of Southern California, Los Angeles, California 90089

INFORMS Journal on Computing, 2021, vol. 33, issue 1, 51-71

Abstract: Stochastic decomposition (SD) has been a computationally effective approach to solve large-scale stochastic programming (SP) problems arising in practical applications. By using incremental sampling, this approach is designed to discover an appropriate sample size for a given SP instance, thus precluding the need for either scenario reduction or arbitrary sample sizes to create sample average approximations (SAA). When compared with the solutions obtained using the SAA procedure, SD provides solutions of similar quality in far less computational time using ordinarily available computational resources. However, previous versions of SD were not applicable to problems with randomness in second-stage cost coefficients. In this paper, we extend its capabilities by relaxing this assumption on cost coefficients in the second stage. In addition to the algorithmic enhancements necessary to achieve this, we also present the details of implementing these extensions, which preserve the computational edge of SD. Finally, we illustrate the computational results obtained from the latest implementation of SD on a variety of test instances generated for problems from the literature. We compare these results with those obtained from the regularized L-shaped method applied to the SAA function of these problems with different sample sizes.

Keywords: stochastic programming; stochastic decomposition; sample average approximation; two-stage models with random cost coefficients; sequential sampling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1287/ijoc.2019.0929 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:33:y:2021:i:1:p:51-71

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:33:y:2021:i:1:p:51-71