Performance Approximation for Time-Dependent Queues with Generally Distributed Abandonments
Gregor Selinka (),
Raik Stolletz () and
Thomas I. Maindl ()
Additional contact information
Gregor Selinka: Business School, University of Mannheim, 68131 Mannheim, Germany
Raik Stolletz: Business School, University of Mannheim, 68131 Mannheim, Germany
Thomas I. Maindl: Department of Astrophysics, University of Vienna, 1180 Vienna, Austria; SDB Science-Driven Business Ltd, 6025 Larnaca, Cyprus
INFORMS Journal on Computing, 2022, vol. 34, issue 1, 20-38
Abstract:
Many stochastic systems face a time-dependent demand. Especially in stochastic service systems, for example, in call centers, customers may leave the queue if their waiting time exceeds their personal patience. As discussed in the extant literature, it can be useful to use general distributions to model such customer patience. This paper analyzes the time-dependent performance of a multiserver queue with a nonhomogeneous Poisson arrival process with a time-dependent arrival rate, exponentially distributed processing times, and generally distributed time to abandon. Fast and accurate performance approximations are essential for decision support in such queueing systems, but the extant literature lacks appropriate methods for the setting we consider. To approximate time-dependent performance measures for small- and medium-sized systems, we develop a new stationary backlog-carryover (SBC) approach that allows for the analysis of underloaded and overloaded systems. Abandonments are considered in two steps of the algorithm: (i) in the approximation of the utilization as a reduced arrival stream and (ii) in the approximation of waiting-based performance measures with a stationary model for general abandonments. To improve the approximation quality, we discuss an adjustment to the interval lengths. We present a limit result that indicates convergence of the method for stationary parameters. The numerical study compares the approximation quality of different adjustments to the interval length. The new SBC approach is effective for instances with small numbers of time-dependent servers and gamma-distributed abandonment times with different coefficients of variation and for an empirical distribution of the abandonment times from real-world data obtained from a call center. A discrete-event simulation benchmark confirms that the SBC algorithm approximates the performance of the queueing system with abandonments very well for different parameter configurations. Summary of Contribution: The paper presents a fast and accurate numerical method to approximate the performance measures of a time‐dependent queueing system with generally distributed abandonments. The presented stationary backlog carryover approach with abandonment combines algorithmic ideas with stationary queueing models for generally distributed abandonment times. The reliability of the method is analyzed for transient systems and numerically studied with real‐world data.
Keywords: time-dependent queues; generally distributed abandonments; performance analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2021.1090 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:34:y:2022:i:1:p:20-38
Access Statistics for this article
More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().