Solving a Class of Cut-Generating Linear Programs via Machine Learning
Atefeh Rajabalizadeh () and
Danial Davarnia ()
Additional contact information
Atefeh Rajabalizadeh: Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, Iowa 50011
Danial Davarnia: Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, Iowa 50011
INFORMS Journal on Computing, 2024, vol. 36, issue 3, 708-722
Abstract:
Cut-generating linear programs (CGLPs) play a key role as a separation oracle to produce valid inequalities for the feasible region of mixed-integer programs. When incorporated inside branch-and-bound, the cutting planes obtained from CGLPs help to tighten relaxations and improve dual bounds. However, running the CGLPs at the nodes of the branch-and-bound tree is computationally cumbersome due to the large number of node candidates and the lack of a priori knowledge on which nodes admit useful cutting planes. As a result, CGLPs are often avoided at default settings of branch-and-cut algorithms despite their potential impact on improving dual bounds. In this paper, we propose a novel framework based on machine learning to approximate the optimal value of a CGLP class that determines whether a cutting plane can be generated at a node of the branch-and-bound tree. Translating the CGLP as an indicator function of the objective function vector, we show that it can be approximated through conventional data classification techniques. We provide a systematic procedure to efficiently generate training data sets for the corresponding classification problem based on the CGLP structure. We conduct computational experiments on benchmark instances using classification methods such as logistic regression. These results suggest that the approximate CGLP obtained from classification can improve the solution time compared with that of conventional cutting plane methods. Our proposed framework can be efficiently applied to a large number of nodes in the branch-and-bound tree to identify the best candidates for adding a cut.
Keywords: cutting planes; cut-generating linear programs; machine learning; data classification; function approximation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2022.0241 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:36:y:2024:i:3:p:708-722
Access Statistics for this article
More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().