EconPapers    
Economics at your fingertips  
 

An Approximate Dynamic Programming Approach to Dynamic Stochastic Matching

Fan You () and Thomas Vossen ()
Additional contact information
Fan You: Leeds School of Business, University of Colorado, Boulder, Colorado 80309
Thomas Vossen: Leeds School of Business, University of Colorado, Boulder, Colorado 80309

INFORMS Journal on Computing, 2024, vol. 36, issue 4, 1006-1022

Abstract: Dynamic stochastic matching problems arise in a variety of recent applications, ranging from ridesharing and online video games to kidney exchange. Such problems are naturally formulated as Markov decision processes (MDPs) that are, however, intractable in general. To improve tractability, we investigate the linear programming-based approach to approximate dynamic programming. This approach can provide both feasible control policies and bounds on the MDPs’ optimal policy value, which can be used to establish optimality gaps. However, the approximate linear programs (ALPs) resulting from this approach can often be difficult to solve. To address this computational challenge, we derive novel ALP reformulations that can be used for a broad class of dynamic stochastic matching problems that incorporate, among others, possible match failures and certain restrictions on feasible matchings. We show that these ALP reformulations can be solved efficiently and applied to a broad class of dynamic matching problems. In addition, our numerical results indicate that our ALP reformulations can produce tight bounds that allow us to establish near-optimal policy performance for a broad set of problem instances. Thus, ALP reformulations can present an attractive alternative for applications that involve dynamic stochastic matching.

Keywords: matching; approximate dynamic programming; kidney exchange; ridesharing; matchmaking (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2021.0203 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:36:y:2024:i:4:p:1006-1022

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:36:y:2024:i:4:p:1006-1022