EconPapers    
Economics at your fingertips  
 

Stochastic First-Order Algorithms for Constrained Distributionally Robust Optimization

Hyungki Im () and Paul Grigas ()
Additional contact information
Hyungki Im: Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, California 94720
Paul Grigas: Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, California 94720

INFORMS Journal on Computing, 2025, vol. 37, issue 2, 212-229

Abstract: We consider distributionally robust optimization (DRO) problems, reformulated as distributionally robust feasibility (DRF) problems, with multiple expectation constraints. We propose a generic stochastic first-order meta-algorithm, where the decision variables and uncertain distribution parameters are each updated separately by applying stochastic first-order methods. We then specialize our results to the case of using two specific versions of stochastic mirror descent (SMD): (i) a novel approximate version of SMD to update the decision variables, and (ii) the bandit mirror descent method to update the distribution parameters in the case of χ 2 -divergence sets. For this specialization, we demonstrate that the total number of iterations is independent of the dimensions of the decision variables and distribution parameters. Moreover, the cost per iteration to update both sets of variables is nearly independent of the dimension of the distribution parameters, allowing for high-dimensional ambiguity sets. Furthermore, we show that the total number of iterations of our algorithm has a logarithmic dependence on the number of constraints. Experiments on logistic regression with fairness constraints, personalized parameter selection in a social network, and the multi-item newsvendor problem verify the theoretical results and show the usefulness of the algorithm, in particular when the dimension of the distribution parameters is large.

Keywords: distributionally robust optimization; stochastic first-order methods; saddle point problems (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2023.0167 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:37:y:2025:i:2:p:212-229

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-04-03
Handle: RePEc:inm:orijoc:v:37:y:2025:i:2:p:212-229