EconPapers    
Economics at your fingertips  
 

Revenue Management with Repeated Customer Interactions

Andre Calmon, Florin D. Ciocan () and Gonzalo Romero ()
Additional contact information
Florin D. Ciocan: Technology and Operations Management, INSEAD, 77305 Fontainebleau, France
Gonzalo Romero: Rotman School of Management, University of Toronto, Toronto, Ontario M5S 1A1, Canada

Management Science, 2021, vol. 67, issue 5, 2944-2963

Abstract: Motivated by online advertising, we model and analyze a revenue management problem where a platform interacts with a set of customers over a number of periods. Unlike traditional network revenue management, which treats the interaction between platform and customers as one-shot, we consider stateful customers who can dynamically change their goodwill toward the platform depending on the quality of their past interactions. Customer goodwill further determines the amount of budget that they allocate to the platform in the future. These dynamics create a trade-off between the platform myopically maximizing short-term revenues, versus maximizing the long-term goodwill of its customers to collect higher future revenues. We identify a set of natural conditions under which myopic policies that ignore the budget dynamics are either optimal or admit parametric guarantees; such simple policies are particularly desirable since they do not require the platform to learn the parameters of each customer dynamic and only rely on data that is readily available to the platform. We also show that, if these conditions do not hold, myopic and finite look-ahead policies can perform arbitrarily poorly in this repeated setting. From an optimization perspective, this is one of a few instances where myopic policies are optimal or have parametric performance guarantees for a dynamic program with nonconvex dynamics. We extend our model to the cases where supply varies over time and where customers may not interact with the platform in every period.

Keywords: revenue management; analysis of algorithms; dynamic programming (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.2020.3677 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:67:y:2021:i:5:p:2944-2963

Access Statistics for this article

More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormnsc:v:67:y:2021:i:5:p:2944-2963